First Semester B.E. Degree Examination, January 2011

Engineering Mathematics – I Time: 3 hrs. Max. Marks:100 Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. PART - Aa. Choose the correct answer: i) If f(x) is continuous in [a, b], differentiable in (a, b) and f(a) = f(b), then there exists $C \in (a, b)$ such that f'(c) = 0. A) unique B) infinite C) al least one D) no such ii) The Maclaurin's series of f(x) = k(constant) is, A) f(x) = kB) f(x) = 0C) does not exist D) f(x) = k!iii) The nth derivative of $\frac{1}{(x+2)^3}$ is A) $\frac{(-1)^n (n+2)!}{2!(x+2)^{n+3}}$ B) $\frac{1}{(x+2)^{n+3}}$ C) ZERO D) None of these. iv) The 12th derivative of $y = e^{\sqrt{2}x} \sin \sqrt{2}x$ is A) (64)yB) -4096y C) (32)yD) None of these. (04 Marks) b. If $x = \tan(\log y)$, prove that $(1+x^2)y_{n+1} + (2nx-1)y_n + n(n-1)y_{n-1} = 0$ (06 Marks) c. Expand $\log(\sec x)$ by using the Maclaurin's series expansion up to the term containing x^4 . State and prove the Lagrange's mean value theorem. (05 Marks) Choose the correct answer: 2 a. i) Which statement is true? A) $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty$ are not indeterminate B) $0^0, \infty^0$ are not indeterminate

- C) 1^{∞} is not indeterminate
- D) None of these.
- ii) The angle between $r = a\sin\theta$ and $r = b\cos\theta$, is
 - A) $\pi/2$
- $B) \pi$
- C) $\pi/2$
- D) None of these.

A)
$$\frac{[r^2 + r_1^2]^{3/2}}{r^2 + 2r_1^2 - rr_2}$$

iii) The radius of a curvature in the polar form is,

A) $\frac{[r^2 + r_1^2]^{3/2}}{r^2 + 2r_1^2 - rr_2}$ B) $\frac{[r_1^2 + r^2]^{3/2}}{r_1^2 + 2r^2 - rr_2}$ C) $\frac{[r^2 + r_1^2]^{3/2}}{r^2 + 2r_1r_2 - rr_2}$ D) None of these.

iv)
$$\lim_{x \to 0} \frac{2^x - 3^x}{5^x - 6^x}$$
 is,

- A) $\frac{\log(2/3)}{\log(5/6)}$ B) $\log\left[\frac{2}{3} \frac{5}{6}\right]$ C) $\log\left[\frac{2/3}{5/6}\right]$ D) None of these.

(04 Marks)

- b. Evaluate: i) $\lim_{x \to 0} \frac{\sin x \sin^{-1} x}{x^2}$ ii) $\lim_{x \to 0} \left(\frac{2^x + 3^x + 4^x}{3}\right)^{1/x}$ (06 Marks)
- c. Derive an expression for the radius of curvature in the pedal form. (05 Marks)
- d. Find the radius of curvature of $a^2y = x^3 a^3$ at the point where the curve cuts x-axis. (05 Marks)

				10MAT11		
3	a.	Choose the correct answer:				
		i) If $u = ax^2 + by^2 + abxy$, then $\frac{\partial^3 u}{\partial x^2 \partial y}$ is				
		A) Zero B) $a + b + ab$ ii) The Taylor's series of $f(x, y) = xy$ at $(1, 1)$	C) ab	D) None of these.		
		A) $1 + [(x-1) + (y-1)]$ C) $(x-1)(y-1)$		[-1)] + [(x-1)(y-1)]		
		iii) The Jacobian of transformation from the C	artesian to polar coor	dinate system is,		
			C) $r^2 \sin\theta$	D) None of these.		
		iv) If $u = f(x, y)$, $x = \phi(t)$, $y = \psi(t)$, then du/dt	is,			
		A) $\frac{du}{dx} \frac{dx}{dt} + \frac{du}{dy} \frac{dy}{dt}$ B) $\frac{dx}{dt} + \frac{dy}{dt}$	C) $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{d\mathbf{x}}{dt} + \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \frac{d\mathbf{y}}{dt}$	D) None of these.		
		•		(04 Marks		
	b.	If $\sin u = \frac{x^2 y^2}{x + y}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3 \tan x$	u	(06 Marks		
	c.	If $u = \frac{xy}{z}$, $v = \frac{yz}{x}$ and $w = \frac{xz}{y}$, find $J = \frac{\partial(u, v)}{\partial(x, v)}$	$\frac{(v,w)}{(v,z)}$.	(05 Marks		
	d.	If the H.P. required by the steamer varies as length, find the percentage change in H.P. for respectively.	the cube of the veloc			
4	a.	Choose the correct answer:				
•	۵.	i) The gradient, divergence, curl are respectively				
		A) scalar, scalar, vector	B) vector, scalar, ve	ector		
		C) scalar, vector, vector	calar			
		ii) $\vec{V} = y^2 z \vec{i} + z^2 x \vec{j} + x^2 y \vec{k}$ is				
		A) constant vector B) solenoidal vecto	r C) scalar	D) None of these.		
		iii) Curl grad f is, A) grad curl f B) curl grad f + gra	d curl f C) zero	D) does not exist.		
		iv) If the curvilinear system is spherical polar		•		
			B) $r \sin \theta i + r \cos \theta$			
		C) $\vec{i} + \vec{j} + \vec{k}$	D) None of these.	(04 Marks		
	b.	If $\phi = x^2 + y^2 + z^2$ and $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$, the	en find grado, div F,	curl F. (06 Marks		
	c.			(05 Marks		
	d.	Prove that the cylindrical coordinate system is orthogonal.		(05 Marks		
		PART_I	2			

a. Choose the correct answer: 5

i) The value of $\int_{0}^{\pi} \sin^5 x \cos^6 x \, dx$ is

B) $\frac{4\times2}{11\times9}\frac{\pi}{2}$ C) $\frac{2\times4\times2}{11\times9\times7}$

A) $\frac{5\times 3\times 1}{11\times 9\times 7}$ B) $\frac{4\times 2}{11\times 9}\frac{\pi}{2}$ C) $\frac{2\times 4\times 2}{11\times 9\times 7}$ D) None of these. iii) $x^2+y^2=x^2y^2$ is symmetric about A) x-axis B) y-axis C) the line y=x D) All of these iii) Surface area of a solid of revolution of the curve y=f(x), if rotated about x-axis, is:

B) $\int_{x=a}^{b} 2\pi x \, dy$

iv) Asymptote to the curve
$$y^2(a-x) = x^3$$
 is
A) $y = 0$ B) $x = 0$

D) None of these.

b. Evaluate $\int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx$, $\alpha \ge 0$.

(06 Marks)

(04 Marks)

c. Derive the reduction formula for $\int_{-\pi/2}^{\pi/2} \sin^n x \, dx$.

(05 Marks)

d. Compute the perimeter of the cardiod $r = a (1 + \cos\theta)$.

(05 Marks)

a. Choose the correct answer:

i) For the differential equation $\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^6 + y = x^4$, the order and degree respectively are

A) 2, 6

B) 3, 2

C) 2, 4

D) None of these.

ii) $\frac{dy}{dx} + \frac{y}{x} = 0$ is

A) Variable separable and homogeneous

C) Homogeneous and exact

D) All of these.

B) Linear

iii) ydx - xdy = 0 can be reduced to exact, if divided by

C) xy

D) All of these.

A) $x^2 + y^2$ B) y^2 iv) Orthogonal trajectory of $y^2 = 4a(x + a)$ is A) $x^2 = 4a(y + a)$ B) $x^2 + y^2 = a^2$

C) Self orthogonal D) None of these.

(04 Marks)

b. Solve: $(1 + y^2)dx + (x - e^{-tan^{-1}y})dy = 0$

(06 Marks)

c. Solve: $(y^2e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0$

(05 Marks)

d. Find the orthogonal trajectory of the cardiods $r = a(1 - \cos\theta)$, using the differential equation method. (05 Marks)

7 a. Choose the correct answer:

- i) Which of the following is not an elementary transformation?
 - A) Adding two rows

B) Adding two columns

C) Multiplying a row by a non-zero number D) Squaring all the elements of the matrix.

ii) Rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$ is

A) 3

C) 2

D) None of these.

iii) The solution of the simultaneous equations x + y = 0, x - 2y = 0 is

A) only trivial

B) only unique

C) unique and trivial D) None of these.

iv) Which of the following is in the normal form?

A) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ B) $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ C) $C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ D) All of these.

(04 Marks)

c. For what values of λ and μ , the following simultaneous equations have i) No solution a unique solution iii) an infinite number of solutions?

$$x + y + z = 6$$
; $x + 2y + 3z = 10$; $x + 2y + \lambda z = \mu$. (05 Marks)

d. Solve, using the Gauss-Jordan method.

$$x + y + z = 9$$
; $x - 2y + 3z = 8$; $2x + y - z = 3$. (05 Marks)

a. Choose the correct answer: 8

i) The eigen values of the matrix A exist, if

A) A is a square matrix

B) A is singular matrix

C) A is any matrix

D) A is a null matrix.

ii) A square matrix A of order 'n' is similar to a square matrix B of the order 'n' if A) $A = P^{-1}BP$ B) AB = Null matrix C) AB = Unit matrix D) None of these.

iii) Which of these is in quadratic form?

A)
$$x^2 + y^2 + z^2 - 2xy + yz - zx$$

B)
$$x^3 + y^3 + z^2$$

D) None of the

C)
$$(x - y + z)^2$$

D) None of these.

iv) Quadratic form (X'AX) is positive definite, if

A) All the eigen values of A are > 0 B) At least one eigen value of A is > 0

C) All eigen values ≥ 0 and at least one eigen value = 0 D) No such condition.

(04 Marks)

b. Find the eigen values and eigen vector corresponding to the largest eigen value of the matrix

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 (06 Marks)

c. If $P = \begin{bmatrix} -1 & 1 & 1 \\ 0 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ is a modal matrix of the matrix A in Q.No.8(b); and inverse of P is $P^{-1} = \begin{bmatrix} -3 & 0 & 3 \\ 2 & -2 & 2 \\ 1 & 2 & 1 \end{bmatrix}$, then transform A in to diagonal form and hence find A⁴. (05 M

$$P^{-1} = \begin{bmatrix} -3 & 0 & 3 \\ 2 & -2 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
, then transform A in to diagonal form and hence find A⁴. (05 Marks)

d. Find the nature of the quadratic forms for which corresponding eigen values of the corresponding matrices are given as

Matrix	Eigen values
A	2, 3, 4
В	-3, -4, -5
С	0, 3, 6
D	0, -3, -4
Е	-2, 3, 4

(05 Marks)